#+TITLE: OpenShift Ambient Mesh Setup #+DATE: <2025-08-21 Thu> #+AUTHOR: James Blair This is a short demonstration of [[https://istio.io/latest/docs/ambient][Istio Ambient Mesh]] on OpenShift ~4.19~ via the [[https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/index][OpenShift Service Mesh]] operator. You can install Istio ambient mode on OpenShift Container Platform 4.19 or later and Red Hat OpenShift Service Mesh 3.1.0 or later with the required Gateway API custom resource definitions (CRDs). This is currently a Technology Preview feature of OpenShift. * Pre-requisites Before we begin, let's ensure we are logged into our cluster in the terminal and the cluster meets our version requirements. ** Verify cluster auth status #+NAMEL: Verify cluster login status #+begin_src bash oc version && oc whoami #+end_src #+RESULTS: #+begin_example Client Version: 4.19.7 Kustomize Version: v5.5.0 Server Version: 4.19.9 Kubernetes Version: v1.32.7 admin #+end_example ** Upgrade cluster The Red Hat demo system environment available was not yet running OpenShift 4.19 so I needed to upgrade it before performing any demo preparation steps. The first step is to acknowledge the k8s [[https://access.redhat.com/articles/7112216][api deprecations]] between 4.18 and 4.19. #+NAME: Patch admin acks #+begin_src tmux oc -n openshift-config patch cm admin-acks --patch '{"data":{"ack-4.18-kube-1.32-api-removals-in-4.19":"true"}}' --type=merge #+end_src Once admin acks are in place we can set the upgrade channel to ~fast-.419~. #+NAME: Set cluster upgrade channel to 4.19 #+begin_src tmux oc adm upgrade channel fast-4.19 #+end_src Now we're ready to trigger the upgrade. #+NAME: Trigger the cluster upgrade #+begin_src tmux oc adm upgrade --to 4.19.9 #+end_src Before proceeding with any further steps let's wait for the cluster upgrade to complete. #+NAME: Wait for the upgrade to complete #+begin_src tmux oc adm wait-for-stable-cluster #+end_src * Install service mesh operator Our first step to prepare the demonstration is to install the service mesh operator. #+NAME: Create operator subscription #+begin_src bash cat << EOF | oc apply --filename - apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: servicemeshoperator3 namespace: openshift-operators spec: channel: stable installPlanApproval: Automatic name: servicemeshoperator3 source: redhat-operators sourceNamespace: openshift-marketplace EOF #+end_src #+RESULTS: Create operator subscription #+begin_example subscription.operators.coreos.com/servicemeshoperator3 created #+end_example Once the operator has completed installation we should see new Custom Resources available for use: #+NAME: Check sail operator crds #+begin_src bash oc get crd | grep sail #+end_src #+RESULTS: Check sail operator crds | istiocnis.sailoperator.io | 2025-08-21T00:30:28Z | | istiorevisions.sailoperator.io | 2025-08-21T00:30:28Z | | istiorevisiontags.sailoperator.io | 2025-08-21T00:30:29Z | | istios.sailoperator.io | 2025-08-21T00:30:28Z | | ztunnels.sailoperator.io | 2025-08-21T00:30:28Z | * Deploy ambient istio ** Deploy istio control plane With the operator installed lets install the istio control plane with the ~ambient~ profile. #+NAME Install istio control plane #+begin_src bash cat << EOF | oc apply --filename - apiVersion: v1 kind: Namespace metadata: name: istio-system --- apiVersion: sailoperator.io/v1 kind: Istio metadata: name: default spec: namespace: istio-system profile: ambient values: pilot: trustedZtunnelNamespace: ztunnel meshConfig: discoverySelectors: - matchLabels: istio-discovery: enabled EOF #+end_src #+RESULTS: #+begin_example namespace/istio-system created istio.sailoperator.io/default created #+end_example Once the custom resources are created we can wait for the istio control plane deployment to become ready. #+NAME: Wait for istio control plane deployment #+begin_src bash oc wait --for=condition=Ready istios/default --timeout=3m #+end_src #+RESULTS: Wait for istio control plane deployment #+begin_example istio.sailoperator.io/default condition met #+end_example ** Deploy istio container network interface Once the control plane is in place we'll create the corresponding networking components, again with the profile ~ambient~. #+NAME: Deploy istio cni #+begin_src bash cat << EOF | oc apply --filename - apiVersion: v1 kind: Namespace metadata: name: istio-cni --- apiVersion: sailoperator.io/v1 kind: IstioCNI metadata: name: default spec: namespace: istio-cni profile: ambient EOF #+end_src #+RESULTS: Deploy istio cni #+begin_example namespace/istio-cni created istiocni.sailoperator.io/default created #+end_example As we did earlier, after creating the custom resources we can wait for the components to become ready. #+NAME: Wait for istio cni deployment #+begin_src bash oc wait --for=condition=Ready istios/default --timeout=3m #+end_src #+RESULTS: Wait for istio cni deployment #+begin_example istio.sailoperator.io/default condition met #+end_example ** Deploy istio ztunnel proxies Lastly, we need to deploy the istio ztunnel proxies which are a per-node proxy that manages secure, transparent tcp connections for all workloads on the node. Once again these will be deployed with the ~ambient~ profile. #+NAME: Deploy istio ztunnel proxies #+begin_src bash cat << EOF | oc apply --filename - apiVersion: v1 kind: Namespace metadata: name: ztunnel --- apiVersion: sailoperator.io/v1alpha1 kind: ZTunnel metadata: name: default spec: namespace: istio-system profile: ambient EOF #+end_src #+RESULTS: Deploy istio ztunnel proxies #+begin_example namespace/ztunnel created ztunnel.sailoperator.io/default created #+end_example And again let's wait to verify that these have deployed successfully before proceeding. #+NAME: Wait for istio ztunnel deployment #+begin_src bash oc wait --for=condition=Ready ztunnel/default --timeout=3m #+end_src #+RESULTS: Wait for istio ztunnel deployment #+begin_example ztunnel.sailoperator.io/default condition met #+end_example * Deploying a sample workload Once our istio ambient mode mesh is in place, let's deploy a workload. Notice how we include the ~istio.io/dataplane-mode: ambient~ label on our namespace to enrol all workloads in the mesh in our namespace. #+NAME: Deploy sample workload #+begin_src bash cat << EOF | oc apply --filename - apiVersion: v1 kind: Namespace metadata: name: workload labels: istio.io/dataplane-mode: ambient EOF oc apply --namespace workload --filename workload.yaml #+end_src #+RESULTS: Deploy sample workload #+begin_example namespace/workload created deployment.apps/quake created service/quake created configmap/quake3-server-config created #+end_example * Observing the mesh With istio deployed in ambient mode and a workload enabled, let's validate this by installing [[https://kiali.io][Kiali]] to enable mesh observability. ** Installing the kiali operator To install the operator all we need to do is create a ~Subscription~ resource. #+NAME: Installing the kiali operator #+begin_src bash cat << EOF | oc apply --filename - apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: kiali-ossm namespace: openshift-operators spec: channel: stable installPlanApproval: Automatic name: kiali-ossm source: redhat-operators sourceNamespace: openshift-marketplace EOF #+end_src #+RESULTS: Installing the kiali operator #+begin_example subscription.operators.coreos.com/kiali-ossm created #+end_example ** Enable cluster user workload monitoring While the operator is installing let's enable user workload monitoring on our cluster, we'll need this to scrape metrics from our deployed service mesh control plane and ztunnel proxies. #+NAME: Enable cluster user workload monitoring #+begin_src bash cat << EOF | oc apply --filename - apiVersion: v1 kind: ConfigMap metadata: name: cluster-monitoring-config namespace: openshift-monitoring data: config.yaml: | enableUserWorkload: true EOF #+end_src #+RESULTS: Enable cluster user workload monitoring #+begin_example configmap/cluster-monitoring-config created #+end_example ** Configure openshift monitoring with service mesh Let's also ensure that cluster monitoring knows to scrape mesh metrics by creating a ~ServiceMonitor~. #+NAME: Create service monitor for istio control plane #+begin_src bash cat << EOF | oc apply --filename - apiVersion: monitoring.coreos.com/v1 kind: ServiceMonitor metadata: name: istiod-monitor namespace: istio-system spec: targetLabels: - app selector: matchLabels: istio: pilot endpoints: - port: http-monitoring interval: 30s EOF #+end_src #+RESULTS: Create service monitor for istio control plane #+begin_example servicemonitor.monitoring.coreos.com/istiod-monitor created #+end_example ** Assign kiali permissions With the mesh metrics being scraped by the cluster prometheus instance we are almost ready to deploy Kiali to visualize them. Before we do, let's ensure kiali will have permissions to retrieve cluster monitoring information. #+NAME: Assign kiali permissions #+begin_src bash cat << EOF | oc apply --filename - apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: kiali-monitoring-rbac roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-monitoring-view subjects: - kind: ServiceAccount name: kiali-service-account namespace: istio-system EOF #+end_src #+RESULTS: Assign kiali permissions #+begin_example clusterrolebinding.rbac.authorization.k8s.io/kiali-monitoring-rbac created #+end_example ** Deploy kiali Finally - Let's enable the OpenShift Web Console integration for Kiali so we can view the service mesh details directly in the OpenShift Web Console! #+NAME: Deploy kiali console plugin #+begin_src bash cat << EOF | oc apply --filename - apiVersion: kiali.io/v1alpha1 kind: OSSMConsole metadata: name: ossmconsole EOF #+end_src #+RESULTS: Deploy kiali console plugin #+begin_example ossmconsole.kiali.io/ossmconsole created #+end_example Once the console plugin is deployed we should see our workload tagged as ~Ambient~: [[./kiali-screenshot.png]]